Characterisation and Modelling of Ultrashort Laser-Driven Electromagnetic Pulses

Author:

Nelissen Kwinten,Liszi Máté,Marco Massimo De,Ospina Valeria,Drotár István,Gatti Giancarlo,Kamperidis Christos,Volpe Luca

Abstract

AbstractRecent advances on laser technology have enabled the generation of ultrashort (fs) high power (PW) laser systems. For such large scale laser facilities there is an imperative demand for high repetition rate operation in symbiosis with beamlines or end-stations. In such extreme conditions the generation of electromagnetic pulses (EMP) during high intense laser target interaction experiments can tip the scale for the good outcome of the campaign. The EMP effects are several including interference with diagnostic devices and actuators as well as damage of electrical components. The EMP issue is quite known in the picosecond (ps) pulse laser experiments but no systematic study on EMP issues at multi-Joule fs-class lasers has been conducted thus far. In this paper we report the first experimental campaign for EMP-measurements performed at the 200 TW laser system (VEGA 2) at CLPU laser center. EMP pulse energy has been measured as a function of the laser intensity and energy together with other relevant quantities such as (i) the charge of the laser-driven protons and their maximum energy, as well as (ii) the X-ray Kα emission coming from electron interaction inside the target. Analysis of experimental results demonstrate (and confirm) a direct correlation between the measured EMP pulse energy and the laser parameters such as laser intensity and laser energy in the ultrashort pulse duration regime. Numerical FEM (Finite Element Method) simulations of the EMP generated by the target holder system have been performed and the simulations results are shown to be in good agreement with the experimental ones.

Funder

GINOP

Cabildo Insular de La Palma

Consejería de Educación, Junta de Castilla y León

Consejería de Salud, Junta de Andalucía

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3