Model experiment research on HPTL anchoring technology for coal-rock composite roof in deep roadway

Author:

Xie Zhengzheng,Li Yongle,Zhang Nong,He Zhe,Cao Chuang,Li Wei

Abstract

AbstractSince the western region of China, which is typical of extraordinary resource endowments, has gradually emerged as the major mining zone in China, the mining of thick coal seams and roadways with coal-rock composite roof have become more and more common in this region. However, it is extremely difficult to realize safe and effective maintenance and control of such roadways due to the differences in natural endowments of coal-rock masses. With the roadway with coal-rock composite roof of Hulusu Coal Mine in western China as the engineering background, experiment research on large-scale similarity model was conducted through comprehensive measures such as the pneumatic loading system, the surrounding rock stress monitoring system, the roadway deformation monitoring system, the bolt load monitoring system, and the displacement field monitoring system in this paper. According to the results of the experiment, the control effects of the three support systems on the roadway with coal-rock composite roof were significantly different. When the single support of short anchor bolts was applied, the comparatively low initial anchor-hold failed to constrain the initial micro deformation of the roof. Consequently, wide-range fractures of the roof were triggered at a loading pressure of 0.8 MPa. In the meanwhile, the deep surrounding rocks witnessed a downward inflection point in stress, accompanied by the possibility of the collapse of the thin-layer anchorage zone at any time. As for the support combining both short anchor bolts and long anchor cables, though a reinforced effect on the bolt anchorage zone could be achieved with the help of the cables, the active reinforcement capacity of the bolt was limited. The bolt anchorage zone was the first to be damaged at a loading pressure of 0.9 MPa, which would subsequently affect the effective bearing capacity of the deep surrounding rocks. In the application of the single support of high-strength long anchor bolts, the long bolts with high pre-tightening force were able to lock multiple groups of coal-rock strata to form a thick-layer anchorage bearing structure capable of withstanding a load as high as 1.0 MPa. The crash and collapse of the coal wall eventually caused the subsidence of the roof. Based on the intense dynamic load experiment and the feedbacks of engineering application outcomes in the field, it was concluded that the high-pretension thick-layer (HPTL) anchoring technology can effectively constrain the deformation of roadways with coal-rock composite roof with favorable application outcomes.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3