Author:
Vali Mohebat,Paydar Shahram,Seif Mozhgan,Sabetian Golnar,Abujaber Ahmad,Ghaem Haleh
Abstract
AbstractThe goal of this study was to develop a predictive machine learning model to predict the risk of prolonged mechanical ventilation (PMV) in patients admitted to the intensive care unit (ICU), with a focus on laboratory and Arterial Blood Gas (ABG) data. This retrospective cohort study included ICU patients admitted to Rajaei Hospital in Shiraz between 2016 and March 20, 2022. All adult patients requiring mechanical ventilation and seeking ICU admission had their data analyzed. Six models were created in this study using five machine learning models (PMV more than 3, 5, 7, 10, 14, and 23 days). Patients’ demographic characteristics, Apache II, laboratory information, ABG, and comorbidity were predictors. This study used Logistic regression (LR), artificial neural networks (ANN), support vector machines (SVM), random forest (RF), and C.5 decision tree (C.5 DT) to predict PMV. The study enrolled 1138 eligible patients, excluding brain-dead patients and those without mechanical ventilation or a tracheostomy. The model PMV > 14 days showed the best performance (Accuracy: 83.63–98.54). The essential ABG variables in our two optimal models (artificial neural network and decision tree) in the PMV > 14 models include FiO2, paCO2, and paO2. This study provides evidence that machine learning methods outperform traditional methods and offer a perspective for achieving a consensus definition of PMV. It also introduces ABG and laboratory information as the two most important variables for predicting PMV. Therefore, there is significant value in deploying such models in clinical practice and making them accessible to clinicians to support their decision-making.
Funder
Shiraz University of Medical Sciences
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Esteban, A. et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am. J. Respir. Crit. Care Med. 188, 220–230. https://doi.org/10.1164/rccm.201212-2169OC (2013).
2. Divo, M. J., Murray, S., Cortopassi, F. & Celli, B. R. Prolonged mechanical ventilation in Massachusetts: The 2006 prevalence survey. Respir. Care 55, 1693–1698 (2010).
3. Hsu, C. L. et al. Timing of tracheostomy as a determinant of weaning success in critically ill patients: A retrospective study. Crit. Care 9, R46-52. https://doi.org/10.1186/cc3018 (2005).
4. Wang, C. H. et al. Predictive factors of in-hospital mortality in ventilated intensive care unit: A prospective cohort study. Medicine (Baltimore) 96, e9165. https://doi.org/10.1097/md.0000000000009165 (2017).
5. Clark, P. A. & Lettieri, C. J. Clinical model for predicting prolonged mechanical ventilation. J. Crit. Care 28, 880.e881-880.e887 (2013).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献