Prediction prolonged mechanical ventilation in trauma patients of the intensive care unit according to initial medical factors: a machine learning approach

Author:

Vali Mohebat,Paydar Shahram,Seif Mozhgan,Sabetian Golnar,Abujaber Ahmad,Ghaem Haleh

Abstract

AbstractThe goal of this study was to develop a predictive machine learning model to predict the risk of prolonged mechanical ventilation (PMV) in patients admitted to the intensive care unit (ICU), with a focus on laboratory and Arterial Blood Gas (ABG) data. This retrospective cohort study included ICU patients admitted to Rajaei Hospital in Shiraz between 2016 and March 20, 2022. All adult patients requiring mechanical ventilation and seeking ICU admission had their data analyzed. Six models were created in this study using five machine learning models (PMV more than 3, 5, 7, 10, 14, and 23 days). Patients’ demographic characteristics, Apache II, laboratory information, ABG, and comorbidity were predictors. This study used Logistic regression (LR), artificial neural networks (ANN), support vector machines (SVM), random forest (RF), and C.5 decision tree (C.5 DT) to predict PMV. The study enrolled 1138 eligible patients, excluding brain-dead patients and those without mechanical ventilation or a tracheostomy. The model PMV > 14 days showed the best performance (Accuracy: 83.63–98.54). The essential ABG variables in our two optimal models (artificial neural network and decision tree) in the PMV > 14 models include FiO2, paCO2, and paO2. This study provides evidence that machine learning methods outperform traditional methods and offer a perspective for achieving a consensus definition of PMV. It also introduces ABG and laboratory information as the two most important variables for predicting PMV. Therefore, there is significant value in deploying such models in clinical practice and making them accessible to clinicians to support their decision-making.

Funder

Shiraz University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3