Land subsidence analysis along high-speed railway based on EEMD-Prophet method

Author:

Dongwei Qiu,Yuci Tong,Yuzheng Wang,Keliang Ding,Tiancheng Liu,Shanshan Wan

Abstract

AbstractEnvironmental changes and ground subsidence along railway lines are serious concerns during high-speed railway operations. It is worth noting that AutoRegressive Integrated Moving Average (ARMA), Long Short-Term Memory (LSTM), and other prediction methods may present limitations when applied to predict InSAR time series results. To address this issue, this study proposes a prediction method that decomposes the nonlinear settlement time series of feature points obtained through InSAR technology using Ensemble Empirical Mode Decomposition (EEMD). Subsequently, multiple Intrinsic Mode Functions (IMFs) are generated, and each IMF is individually predicted using the Prophet forecasting model. Finally, we employ an equal-weight superimposition method to combine the results, resulting in the prediction of the InSAR settlement time series. The predicted values of each component are subsequently weighted equally and combined to derive the final prediction outcome. This paper selects InSAR monitoring data along a high-speed railway in inland China and uses the proposed method and ARMA and Prophet models to carry out comparative experiments. The experimental results show that compared with the ARMA and Prophet models, the method in this paper improves the root mean square error by 58.01% and 32.3%, and increases the mean absolute error by 62.69% and 33.78%, respectively. The predicted settlement values generated by our method exhibit better agreement with the actual InSAR monitoring values.

Funder

Postgraduate Education and Teaching Quality Improvement Project of the Beijing University of Civil Engineering and Architecture , China

BUCEA Postgraduate Innovation Project, China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3