Necrotrophic lifestyle of Rhizoctonia solani AG3-PT during interaction with its host plant potato as revealed by transcriptome analysis

Author:

Zrenner Rita,Genzel Franziska,Verwaaijen Bart,Wibberg Daniel,Grosch Rita

Abstract

AbstractThe soil-borne pathogen Rhizoctonia solani infects a broad range of plants worldwide and is responsible for significant crop losses. Rhizoctonia solani AG3-PT attacks germinating potato sprouts underground while molecular responses during interaction are unknown. To gain insights into processes induced in the fungus especially at early stage of interaction, transcriptional activity was compared between growth of mycelium in liquid culture and the growing fungus in interaction with potato sprouts using RNA-sequencing. Genes coding for enzymes with diverse hydrolase activities were strongly differentially expressed, however with remarkably dissimilar time response. While at 3 dpi, expression of genes coding for peptidases was predominantly induced, strongest induction was found for genes encoding hydrolases acting on cell wall components at 8 dpi. Several genes with unknown function were also differentially expressed, thus assuming putative roles as effectors to support host colonization. In summary, the presented analysis characterizes the necrotrophic lifestyle of R. solani AG3-PT during early interaction with its host.

Funder

Federal Office for Agriculture and Food of the Federal Ministry of Food and Agriculture, Germany

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3