Author:
Kuperwajs Ionatan,Schütt Heiko H.,Ma Wei Ji
Abstract
AbstractWhen developing models in cognitive science, researchers typically start with their own intuitions about human behavior in a given task and then build in mechanisms that explain additional aspects of the data. This refinement step is often hindered by how difficult it is to distinguish the unpredictable randomness of people’s decisions from meaningful deviations between those decisions and the model. One solution for this problem is to compare the model against deep neural networks trained on behavioral data, which can detect almost any pattern given sufficient data. Here, we apply this method to the domain of planning with a heuristic search model for human play in 4-in-a-row, a combinatorial game where participants think multiple steps into the future. Using a data set consisting of 10,874,547 games, we train deep neural networks to predict human moves and find that they accurately do so while capturing meaningful patterns in the data. Thus, deviations between the model and the best network allow us to identify opportunities for model improvement despite starting with a model that has undergone substantial testing in previous work. Based on this analysis, we add three extensions to the model that range from a simple opening bias to specific adjustments regarding endgame planning. Overall, our work demonstrates the advantages of model comparison with a high-performance deep neural network as well as the feasibility of scaling cognitive models to massive data sets for systematically investigating the processes underlying human sequential decision-making.
Funder
National Science Foundation
U.S. Department of Health & Human Services | National Institutes of Health
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献