Using deep neural networks as a guide for modeling human planning

Author:

Kuperwajs Ionatan,Schütt Heiko H.,Ma Wei Ji

Abstract

AbstractWhen developing models in cognitive science, researchers typically start with their own intuitions about human behavior in a given task and then build in mechanisms that explain additional aspects of the data. This refinement step is often hindered by how difficult it is to distinguish the unpredictable randomness of people’s decisions from meaningful deviations between those decisions and the model. One solution for this problem is to compare the model against deep neural networks trained on behavioral data, which can detect almost any pattern given sufficient data. Here, we apply this method to the domain of planning with a heuristic search model for human play in 4-in-a-row, a combinatorial game where participants think multiple steps into the future. Using a data set consisting of 10,874,547 games, we train deep neural networks to predict human moves and find that they accurately do so while capturing meaningful patterns in the data. Thus, deviations between the model and the best network allow us to identify opportunities for model improvement despite starting with a model that has undergone substantial testing in previous work. Based on this analysis, we add three extensions to the model that range from a simple opening bias to specific adjustments regarding endgame planning. Overall, our work demonstrates the advantages of model comparison with a high-performance deep neural network as well as the feasibility of scaling cognitive models to massive data sets for systematically investigating the processes underlying human sequential decision-making.

Funder

National Science Foundation

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3