Author:
Jiang Yiwen,Xu Bingqing,Zhang Kaiyu,Zhu Wenyu,Lian Xiaoyi,Xu Yihui,Chen Zhe,Liu Lei,Guo Zhengli
Abstract
AbstractSarcopenia has become a heavy disease burden among the elderly. Lipid metabolism was reported to be involved in many degenerative diseases. This study aims to investigate the association between dysregulated lipid metabolism and sarcopenia in geriatric inpatients. This cross-sectional study included 303 patients aged ≥ 60, of which 151 were diagnosed with sarcopenia. The level of total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), homocysteine (HCY), BMI, and fat percentage, were compared between sarcopenia and non-sarcopenia patients. The Spearman correlation coefficient was used to estimate the association between sarcopenia and the level of lipid metabolism. To determine risk factors related to sarcopenia, a multivariate logistic regression analysis was carried out. Risk prediction models were constructed based on all possible data through principal component analysis (PCA), Logistic Regression (LR), Support Vector Machine (SVM), k-Nearest Neighbor (KNN), and eXtreme Gradient Boosting (XGboost). We observed rising prevalence of sarcopenia with increasing age, decreasing BMI, and fat percentage (p < 0.001, Cochran Armitage test). Multivariate logistic regression analysis revealed sarcopenia’s risk factors, including older age, male sex, lower levels of BMI, TC, and TG, and higher levels of LDL and HCY (p < 0.05). The sarcopenia risk prediction model showed the risk prediction value of sarcopenia, with the highest area under the receiver operating curve (AUC) of 0.775. Our study provided thorough insight into the risk factors associated with sarcopenia. It demonstrated that an increase in lipid metabolism-related parameters (BMI, TG, TC), within normal reference ranges, may be protective against sarcopenia. The present study can illuminate the direction and significance of lipid metabolism-related factors in preventing sarcopenia.
Funder
Jiangsu Elderly Health Research Project
Kunshan Science and Technology Project
Bethune·Medical Science Research Project 2020
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献