Strain-controlled spin transport in a two-dimensional (2D) nanomagnet

Author:

Kumari P.,Rani S.,Kar S.,Kamalakar M. Venkata,Ray S. J.

Abstract

AbstractSemiconductors with controllable electronic transport coupled with magnetic behaviour, offering programmable spin arrangements present enticing potential for next generation intelligent technologies. Integrating and linking these two properties has been a long standing challenge for material researchers. Recent discoveries in two-dimensional (2D) magnet shows an ability to tune and control the electronic and magnetic phases at ambient temperature. Here, we illustrate controlled spin transport within the magnetic phase of the 2D semiconductor CrOBr and reveal a substantial connection between its magnetic order and charge carriers. First, we systematically analyse the strain-induced electronic behaviour of 2D CrOBr using density functional theory calculations. Our study demonstrates the phase transition from a magnetic semiconductor → half metal → magnetic metal in the material under strain application, creating intriguing spin-resolved conductance with 100% spin polarisation and spin-injection efficiency. Additionally, the spin-polarised current–voltage (I–V) trend displayed conductance variations with high strain-assisted tunability and a peak-to-valley ratio as well as switching efficiency. Our study reveals that CrOBr can exhibit highly anisotropic behaviour with perfect spin filtering, offering new implications for strain engineered magneto-electronic devices.

Funder

Uppsala University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3