Author:
Reed R.,Park K.,Waddell B.,Timbers T. A.,Li C.,Baxi K.,Giacomin R. M.,Leroux M. R.,Carvalho C. E.
Abstract
AbstractThe conserved Shugoshin (SGO) protein family is essential for mediating proper chromosome segregation from yeast to humans but has also been implicated in diverse roles outside of the nucleus. SGO’s roles include inhibiting incorrect spindle attachment in the kinetochore, regulating the spindle assembly checkpoint (SAC), and ensuring centriole cohesion in the centrosome, all functions that involve different microtubule scaffolding structures in the cell. In Caenorhabditis elegans, a species with holocentric chromosomes, SGO-1 is not required for cohesin protection or spindle attachment but appears important for licensing meiotic recombination. Here we provide the first functional evidence that in C. elegans, Shugoshin functions in another extranuclear, microtubule-based structure, the primary cilium. We identify the centrosomal and microtubule-regulating transforming acidic coiled-coil protein, TACC/TAC-1, which also localizes to the basal body, as an SGO-1 binding protein. Genetic analyses indicate that TAC-1 activity must be maintained below a threshold at the ciliary base for correct cilia function, and that SGO-1 likely participates in constraining TAC-1 to the basal body by influencing the function of the transition zone ‘ciliary gate’. This research expands our understanding of cellular functions of Shugoshin proteins and contributes to the growing examples of overlap between kinetochore, centrosome and cilia proteomes.
Funder
Canadian Institutes of Health Research
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC