Experimental validation of a low-cost maximum power point tracking technique based on artificial neural network for photovoltaic systems

Author:

Abouzeid Ahmed Fathy,Eleraky Hadeer,Kalas Ahmed,Rizk Rawya,Elsakka Mohamed Mohamed,Refaat Ahmed

Abstract

AbstractMaximum power point tracking (MPPT) is a technique involved in photovoltaic (PV) systems for optimizing the output power of solar panels. Traditional solutions like perturb and observe (P&O) and Incremental Conductance (IC) are commonly utilized to follow the MPP under various environmental circumstances. However, these algorithms suffer from slow tracking speed and low dynamics under fast-changing environment conditions. To cope with these demerits, a data-driven artificial neural network (ANN) algorithm for MPPT is proposed in this paper. By leveraging the learning capabilities of the ANN, the PV operating point can be adapted to dynamic changes in solar irradiation and temperature. Consequently, it offers promising solutions for MPPT in fast-changing environments as well as overcoming the limitations of traditional MPPT techniques. In this paper, simulations verification and experimental validation of a proposed data-driven ANN-MPPT technique are presented. Additionally, the proposed technique is analyzed and compared to traditional MPPT methods. The numerical and experimental findings indicate that, of the examined MPPT methods, the proposed ANN-MPPT approach achieves the highest MPPT efficiency at 98.16% and the shortest tracking time of 1.3 s.

Funder

Port Said University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3