Author:
Ali Ibrahim,Wassif Khaled,Bayomi Hanaa
Abstract
AbstractSensors, wearables, mobile devices, and other Internet of Things (IoT) devices are becoming increasingly integrated into all aspects of our lives. They are capable of gathering enormous amounts of data, such as image data, which can then be sent to the cloud for processing. However, this results in an increase in network traffic and latency. To overcome these difficulties, edge computing has been proposed as a paradigm for computing that brings processing closer to the location where data is produced. This paper explores the merging of cloud and edge computing for IoT and investigates approaches using machine learning for dimensionality reduction of images on the edge, employing the autoencoder deep learning-based approach and principal component analysis (PCA). The encoded data is then sent to the cloud server, where it is used directly for any machine learning task without significantly impacting the accuracy of the data processed in the cloud. The proposed approach has been evaluated on an object detection task using a set of 4000 images randomly chosen from three datasets: COCO, human detection, and HDA datasets. Results show that a 77% reduction in data did not have a significant impact on the object detection task’s accuracy.
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Tripathi, A., Sindhwani, N., Anand, R. & Dahiya, A. Role of IoT in smart homes and smart cities: challenges, benefits, and applications. In IoT Based Smart Applications (eds Tripathi, A. et al.) 199–217 (Springer, 2022).
2. Alsharif, M. H., Jahid, A., Kelechi, A. H. & Kannadasan, R. Green IoT: A review and future research directions. Symmetry 15, 757. https://doi.org/10.3390/sym15030757 (2023).
3. Saba, T. et al. Cloud-edge load balancing distributed protocol for IoE services using swarm intelligence. Cluster Comput. 26, 2921–2931. https://doi.org/10.1007/s10586-022-03916-5 (2023).
4. Kabir, M. F., Chen, T. & Ludwig, S. A. A performance analysis of dimensionality reduction algorithms in machine learning models for cancer prediction. Healthc. Anal. 3, 100125. https://doi.org/10.1016/j.health.2022.100125 (2023).
5. Rajyalakshmi, V. & Lakshmanna, K. Detection of car parking space by using hybrid deep DenseNet optimization algorithm. Int. J. Netw. Manag. https://doi.org/10.1002/nem.2228 (2023).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献