Author:
Kim Jongbeom,Lee Dongyoon,Lim Hyokyung,Yang Hyekyeong,Kim Jaewoo,Kim Jeesu,Kim Yeonggeun,Kim Hyung Ham,Kim Chulhong
Abstract
AbstractSimultaneous point-by-point raster scanning of optical and acoustic beams has been widely adapted to high-speed photoacoustic microscopy (PAM) using a water-immersible microelectromechanical system or galvanometer scanner. However, when using high-speed water-immersible scanners, the two consecutively acquired bidirectional PAM images are misaligned with each other because of unstable performance, which causes a non-uniform time interval between scanning points. Therefore, only one unidirectionally acquired image is typically used; consequently, the imaging speed is reduced by half. Here, we demonstrate a scanning framework based on a deep neural network (DNN) to correct misaligned PAM images acquired via bidirectional raster scanning. The proposed method doubles the imaging speed compared to that of conventional methods by aligning nonlinear mismatched cross-sectional B-scan photoacoustic images during bidirectional raster scanning. Our DNN-assisted raster scanning framework can further potentially be applied to other raster scanning-based biomedical imaging tools, such as optical coherence tomography, ultrasound microscopy, and confocal microscopy.
Funder
Ministry of Education, South Korea
Ministry of Science and ICT, South Korea
Ministry of Trade, Industry and Energy
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献