Temporal Convolutional Networks for the Advance Prediction of ENSO

Author:

Yan JiningORCID,Mu Lin,Wang Lizhe,Ranjan Rajiv,Zomaya Albert Y.

Abstract

AbstractEl Niño-Southern Oscillation (ENSO), which is one of the main drivers of Earth’s inter-annual climate variability, often causes a wide range of climate anomalies, and the advance prediction of ENSO is always an important and challenging scientific issue. Since a unified and complete ENSO theory has yet to be established, people often use related indicators, such as the Niño 3.4 index and southern oscillation index (SOI), to predict the development trends of ENSO through appropriate numerical simulation models. However, because the ENSO phenomenon is a highly complex and dynamic model and the Niño 3.4 index and SOI mix many low- and high-frequency components, the prediction accuracy of current popular numerical prediction methods is not high. Therefore, this paper proposed the ensemble empirical mode decomposition-temporal convolutional network (EEMD-TCN) hybrid approach, which decomposes the highly variable Niño 3.4 index and SOI into relatively flat subcomponents and then uses the TCN model to predict each subcomponent in advance, finally combining the sub-prediction results to obtain the final ENSO prediction results. Niño 3.4 index and SOI reanalysis data from 1871 to 1973 were used for model training, and the data for 1984–2019 were predicted 1 month, 3 months, 6 months, and 12 months in advance. The results show that the accuracy of the 1-month-lead Niño 3.4 index prediction was the highest, the 12-month-lead SOI prediction was the slowest, and the correlation coefficient between the worst SOI prediction result and the actual value reached 0.6406. Furthermore, the overall prediction accuracy on the Niño 3.4 index was better than that on the SOI, which may have occurred because the SOI contains too many high-frequency components, making prediction difficult. The results of comparative experiments with the TCN, LSTM, and EEMD-LSTM methods showed that the EEMD-TCN provides the best overall prediction of both the Niño 3.4 index and SOI in the 1-, 3-, 6-, and 12-month-lead predictions among all the methods considered. This result means that the TCN approach performs well in the advance prediction of ENSO and will be of great guiding significance in studying it.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan)

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 184 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3