Acoustic stability of a self-gravitating cylinder leading to astrostructure formation

Author:

Dasgupta Sayanti,Atteya Ahmed,Karmakar Pralay Kumar

Abstract

AbstractWe employ a quantum hydrodynamic model to investigate the cylindrical acoustic waves excitable in a gyromagnetoactive self-gravitating viscous cylinder comprised of two-component (electron–ion) plasma. The electronic equation of state incorporates the effect of temperature degeneracy. It reveals an expression for the generalized pressure capable of reproducing a completely degenerate (CD) quantum (Fermi) pressure and a completely non-degenerate (CND) classical (thermal) pressure. A standard cylindrical wave analysis, moderated by the Hankel function, yields a generalized linear (sextic) dispersion relation. The low-frequency analysis is carried out procedurally in four distinct parametric special cases of astronomical importance. It includes the quantum (CD) non-planar (cylindrical), quantum (CD) planar, classical (CND) non-planar (cylindrical), and classical (CND) planar. We examine the multi-parametric influences on the instability dynamics, such as the plasma equilibrium concentration, kinematic viscosity, and so forth. It is found that, in the quantum regime, the concentration plays a major role in the system destabilization. In the classical regime, the plasma temperature plays an important role in both the stabilization and destabilization. It is further seen that the embedded magnetic field influences the instability growth dynamics in different multiparametric regimes extensively, and so forth. The presented analysis can hopefully be applicable to understand the cylindrical acoustic wave dynamics leading actively to the formation of astrophysical gyromagnetic (filamentary) structures in diverse astronomical circumstances in both the classical and quantum regimes of astronomical relevance.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear Acoustic Modes Inside White Dwarfs;Springer Proceedings in Physics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3