Toward explainable heat load patterns prediction for district heating

Author:

Dang L. Minh,Shin Jihye,Li Yanfen,Tightiz Lilia,Nguyen Tan N.,Song Hyoung-Kyu,Moon Hyeonjoon

Abstract

AbstractHeat networks play a vital role in the energy sector by offering thermal energy to residents in certain countries. Effective management and optimization of heat networks require a deep understanding of users' heat usage patterns. Irregular patterns, such as peak usage periods, can exceed the design capacities of the system. However, previous work has mostly neglected the analysis of heat usage profiles or performed on a small scale. To close the gap, this study proposes a data-driven approach to analyze and predict heat load in a district heating network. The study uses data from over eight heating seasons of a cogeneration DH plant in Cheongju, Korea, to build analysis and forecast models using supervised machine learning (ML) algorithms, including support vector regression (SVR), boosting algorithms, and multilayer perceptron (MLP). The models take weather data, holiday information, and historical hourly heat load as input variables. The performance of these algorithms is compared using different training sample sizes of the dataset. The results show that boosting algorithms, particularly XGBoost, are more suitable ML algorithms with lower prediction errors than SVR and MLP. Finally, different explainable artificial intelligence approaches are applied to provide an in-depth interpretation of the trained model and the importance of input variables.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3