Hyaluronan suppresses enhanced cathepsin K expression via activation of NF-κB with mechanical stress loading in a human chondrocytic HCS-2/8 cells

Author:

Suzuki MochihitoORCID,Takahashi Nobunori,Sobue Yasumori,Ohashi Yoshifumi,Kishimoto Kenji,Hattori Kyosuke,Ishiguro Naoki,Kojima Toshihisa

Abstract

AbstractCathepsin K is a protease known to be involved in not only bone remodeling and resorption, but also articular cartilage degradation that leads to osteoarthritis (OA). Hyaluronan (HA) plays a pivotal role in maintaining homeostasis within articular chondrocytes. Intra-articular supplementation of high molecular weight hyaluronan (HMW-HA) has been widely used in OA treatment. However, its prospective mechanism of action is still unclear. In this study, we examined the suppressive effect of HA on enhanced cathepsin K expression induced by mechanical stress loading. A human chondrocytic HCS-2/8 cells were cultured in silicon chambers and subjected to cyclic tensile stress (CTS) loading. CTS loading significantly increased messenger ribonucleic acid and protein expression of cathepsin K, which appeared to be suppressed by pre-treatment with HMW-HA. Activation of nuclear factor-kappa B (NF-κB) was induced by CTS loading, and suppressed by pre-treatment with HMW-HA. Helenalin, a chemical inhibitor of NF-κB, clearly suppressed the enhanced expression of cathepsin K, as well as NF-κB activation induced by CTS loading. The suppressive effect of HMW-HA on enhanced cathepsin K expression via NF-κB inhibition impacts the effectiveness of HMW-HA in OA treatment. Our findings provide new evidence supporting the biological effectiveness of intra-articular HMW-HA injections for treatment of OA.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3