Quantum chemical insight into the effects of the local electron environment on T2*-based MRI

Author:

Petronek M. S.,St-Aubin J. J.,Lee C. Y.,Spitz D. R.,Gillan E. G.,Allen B. G.,Magnotta V. A.

Abstract

AbstractT2* relaxation is an intrinsic magnetic resonance imaging (MRI) parameter that is sensitive to local magnetic field inhomogeneities created by the deposition of endogenous paramagnetic material (e.g. iron). Recent studies suggest that T2* mapping is sensitive to iron oxidation state. In this study, we evaluate the spin state-dependence of T2* relaxation using T2* mapping. We experimentally tested this physical principle using a series of phantom experiments showing that T2* relaxation times are directly proportional to the spin magnetic moment of different transition metals along with their associated magnetic susceptibility. We previously showed that T2* relaxation time can detect the oxidation of Fe2+. In this paper, we demonstrate that T2* relaxation times are significantly longer for the diamagnetic, d10 metal Ga3+, compared to the paramagnetic, d5 metal Fe3+. We also show in a cell culture model that cells supplemented with Ga3+ (S = 0) have a significantly longer relaxation time compared to cells supplemented with Fe3+ (S = 5/2). These data support the hypothesis that dipole–dipole interactions between protons and electrons are driven by the strength of the electron spin magnetic moment in the surrounding environment giving rise to T2* relaxation.

Funder

National Institute of Health

Gateway for Cancer Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3