Author:
Yang Zimeng,Liu Yiying,Han Hang,Zhao Xinyu,Chen Siyu,Li Guofang,Shi Sha,Feng Jinchao
Abstract
AbstractAmmopiptanthus mongolicus is the only evergreen broad-leaved shrub present in arid areas of Northwest China and plays an important role in maintaining the stability of the local desert ecosystem. It can survive under extreme temperatures (e.g., extreme low temperature: − 24.8 °C and extreme high temperature: 37.7 °C). To understand the gene expression-physiological regulation network of A. mongolicus in extreme temperature environments, we monitored the changes in gene expression and photosynthetic traits of the leaves. The results showed that at low temperatures, the net photosynthetic rates (A), Fv'/Fm' and electron transport rate (ETR) decreased, the Fv/Fm ratio was only 0.32, and the proportion of nonregulatory heat dissipation Y(NO) increased. Based on a KEGG analysis of the differentially expressed genes, 15 significantly enriched KEGG pathways were identified, which were mainly related to circadian rhythm, photosynthesis, lipid metabolism, carbohydrate metabolism, plant hormones and other life activities. At high temperatures, the A value increased, and the proportion of regulatory energy dissipation Y(NPQ) increased. The KEGG analysis identified 24 significantly enriched KEGG pathways, which are mainly related to circadian rhythm, carbon sequestration of photosynthesis, carotenoid biosynthesis, secondary metabolites, cofactors and vitamin metabolism. In general, at the expense of photosynthesis, A. mongolicus can ensure the survival of leaves by increasing Y(NO) levels, regulating the circadian rhythm, increasing the synthesis of unsaturated fatty acids and changing the role of plant hormones. Under high-temperature stress, a high photosynthetic capacity was maintained by adjusting the stomatal conductance (gsw), increasing Y(NPQ), consuming excess light energy, continuously assembling and maintaining PSII, and changing the production of antioxidants.
Funder
National Natural Science Foundation of China
Agricultural Cultural Heritage Protection and utilization project
2020 interdisciplinary research project of Minzu University of China
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Yue, G. et al. Cloning and expression analysis of the proline transporter gene of Ammopiptanthus mongolicus. Biotechnol. Bull. 31, 106–112 (2015).
2. Takashima, T. et al. Photosynthesis or persistence: Nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ. 27, 1047–1054 (2004).
3. Warren, C. R. Evergreen trees do not maximize instantaneous photosynthesis. Trends Plant Sci. 9, 270–274 (2004).
4. Sun, H. et al. Cloning and expression analysis of AmMYB-like gene of Ammopiptanthus mongolicus. Genom. Appl. Biol. 36, 5260–5268 (2017).
5. Ren, M. et al. Functional identification of AmANC3 transcription factor gene in drought resistance and cold resistance of Ammopiptanthus mongolicus. Chin. J. Bioeng. 39, 32–39 (2019).