Predicting chronic wasting disease in white-tailed deer at the county scale using machine learning

Author:

Ahmed Md Sohel,Hanley Brenda J.,Mitchell Corey I.,Abbott Rachel C.,Hollingshead Nicholas A.,Booth James G.,Guinness Joe,Jennelle Christopher S.,Hodel Florian H.,Gonzalez-Crespo Carlos,Middaugh Christopher R.,Ballard Jennifer R.,Clemons Bambi,Killmaster Charlie H.,Harms Tyler M.,Caudell Joe N.,Benavidez Westrich Kathryn M.,McCallen Emily,Casey Christine,O’Brien Lindsey M.,Trudeau Jonathan K.,Stewart Chad,Carstensen Michelle,McKinley William T.,Hynes Kevin P.,Stevens Ashley E.,Miller Landon A.,Cook Merril,Myers Ryan T.,Shaw Jonathan,Tonkovich Michael J.,Kelly James D.,Grove Daniel M.,Storm Daniel J.,Schuler Krysten L.

Abstract

AbstractContinued spread of chronic wasting disease (CWD) through wild cervid herds negatively impacts populations, erodes wildlife conservation, drains resource dollars, and challenges wildlife management agencies. Risk factors for CWD have been investigated at state scales, but a regional model to predict locations of new infections can guide increasingly efficient surveillance efforts. We predicted CWD incidence by county using CWD surveillance data depicting white-tailed deer (Odocoileus virginianus) in 16 eastern and midwestern US states. We predicted the binary outcome of CWD-status using four machine learning models, utilized five-fold cross-validation and grid search to pinpoint the best model, then compared model predictions against the subsequent year of surveillance data. Cross validation revealed that the Light Boosting Gradient model was the most reliable predictor given the regional data. The predictive model could be helpful for surveillance planning. Predictions of false positives emphasize areas that warrant targeted CWD surveillance because of similar conditions with counties known to harbor CWD. However, disagreements in positives and negatives between the CWD Prediction Web App predictions and the on-the-ground surveillance data one year later underscore the need for state wildlife agency professionals to use a layered modeling approach to ensure robust surveillance planning. The CWD Prediction Web App is at https://cwd-predict.streamlit.app/.

Funder

U.S. Fish and Wildlife Service

Publisher

Springer Science and Business Media LLC

Reference60 articles.

1. Williams, E. & Young, S. Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J. Wildl. Dis. 16, 89–96 (1980).

2. Poggiolini, I., Saverioni, D. & Parchi, P. Prion protein misfolding, strains, and neurotoxicity: An update from studies on mammalian prions. Int. J. Cell Biol. 2013, 24. https://doi.org/10.1155/2013/910314 (2013).

3. United States Geological Survey (USGS). Distribution of chronic wasting disease in North America. https://www.usgs.gov/media/images/distribution-chronic-wasting-disease-north-america-0. (2024).

4. Association of Fish and Wildlife Agencies (AFWA). Best management practices for surveillance, management, and control of chronic wasting disease. fishwildlife.org/application/files/1315/7054/8052/AFWA_CWD_BMP_First_Supplement_FINAL.pdf. (Washington, DC, USA, 2018).

5. Schuler, K., Hollingshead, N., Kelly, J., Applegate, R., & Yoest, C. Risk-based surveillance for chronic wasting disease in Tennessee. Tennessee Wildlife Resources Agency (TWRA) Wildlife Technical Report 18–4 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3