Effects of transcranial direct current stimulation over human motor cortex on cognitive-motor and sensory-motor functions

Author:

Rizvi Aoun,Bell Kara,Yang Daniel,Montenegro Maria P.,Kim Hakjoo,Bao Shancheng,Wright David L.,Buchanan John J.,Lei Yuming

Abstract

AbstractThe primary motor cortex (M1) is broadly acknowledged for its crucial role in executing voluntary movements. Yet, its contributions to cognitive and sensory functions remain largely unexplored. Transcranial direct current stimulation (tDCS) is a noninvasive neurostimulation method that can modify brain activity, thereby enabling the establishment of a causal link between M1 activity and behavior. This study aimed to investigate the online effects of tDCS over M1 on cognitive-motor and sensory-motor functions. Sixty-four healthy participants underwent either anodal or sham tDCS while concurrently performing a set of standardized robotic tasks. These tasks provided sensitive and objective assessments of brain functions, including action selection, inhibitory control, cognitive control of visuomotor skills, proprioceptive sense, and bimanual coordination. Our results revealed that anodal tDCS applied to M1 enhances decision-making capacity in selecting appropriate motor actions and avoiding distractors compared to sham stimulation, suggesting improved action selection and inhibitory control capabilities. Furthermore, anodal tDCS reduces the movement time required to accomplish bimanual movements, suggesting enhanced bimanual performance. However, we found no impact of anodal tDCS on cognitive control of visuomotor skills and proprioceptive sense. This study suggests that augmenting M1 activity via anodal tDCS influences cognitive-motor and sensory-motor functions in a task-dependent manner.

Funder

Craig H. Neilsen Foundation

American Heart Association

Paralyzed Veterans of America

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3