A novel simulador for agile and graphical modeling of surface plasmon resonance based sensors

Author:

Gomes Julio C. M.,Oliveira Leiva C.

Abstract

AbstractSurface plasmon resonance (SPR) sensor is a consolidated technology for analysis of biomolecular interaction, largely applied in biology and pharmaceutical research. The simulation of the surface plasmon optical excitation response is an important step in the development process of SPR based sensors. The structure, design and configuration of the desired sensor benefits from a previous simulated analyses of the generated responses, defining operational conditions and feasibility of the selected materials to composed the optical coupling layers. Here an online web-based SPR sensor’s simulator is presented. With a visual-oriented interface, enable drag & drop actions to easily and quickly model a variety of sensor arrangements. Presenting an embedded materials database for metals, glasses, 2D materials, nanoparticles, polymers, and custom substances, the simulator enables flexible configuration for sensors operating in angular and spectral modes, as well as localized SPR. The light propagation through the multilayer of materials is presented in terms of Fresnel coefficients, which are graphically displayed. The so-called SPR morphology parameters can be visualized. Moreover, sensor dynamic behavior could be knowledge by a Sensorgram simulation. Localized surface plasmon resonance (LSPR) in homogeneous and spherical nanoparticles is also present in the simulator. Simulated scenario’s in various configurations, designs and excitation were performed and compare with other simulator. The proposed simulator guarantees comparable results with low-code, agile, and intuitive flow of execution.

Funder

Universidade Federal Rural do Semi-Árido

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3