Research on fire resistance and economy of basalt fiber insulation mortar

Author:

Ding Chen,Xue Kaixi,Yi Guangsheng

Abstract

AbstractThe construction sector has become the most critical source of carbon emissions, but the existing thermal insulation materials such as thermal insulation mortar have obvious limitations, so it is urgent to develop building thermal insulation materials with superior performance and low cost. Aiming at the problem of poor bond strength of foam thermal insulation mortar, this research team selected basalt fiber as admixture to verify the influence of basalt fiber content on its performance and the economic feasibility of thermal insulation mortar. The main finding is that basalt fiber as an additive can obviously improve the crack resistance of thermal insulation mortar. When the content of basalt fiber increases from 0 to 2.5%, the compressive strength of mortar increases at first and then decreases, and the bond strength increases nonlinearly, but the thermal conductivity and dry density also increase. Therefore, the optimal content of basalt fiber is 1.5%. The improvement effect of fire resistance of thermal insulation mortar with 1.5% basalt fiber content is better. After curing for 28 days, the mass loss rate of the sample is reduced by about 11.1% after high temperature, and the relative compressive strength is increased by about 9.71% after high temperature. The raw material cost of the new fireproof thermal insulation mortar improved by basalt fiber is lower, and the cost of the finished product is reduced by 16.98%, 28.18%, 33.05% and 38.96%, respectively, compared with the four types of thermal insulation mortar already used in the market. More importantly, the economic recovery period of the new fireproof and thermal insulation mortar is undoubtedly shorter than that of alternative thermal insulation or energy storage materials, which not only achieves low emission and environmental protection, but also satisfies the economic feasibility.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3