Learning and predicting the unknown class using evidential deep learning

Author:

Nagahama AkihitoORCID

Abstract

AbstractIn practical deep-learning applications, such as medical image analysis, autonomous driving, and traffic simulation, the uncertainty of a classification model’s output is critical. Evidential deep learning (EDL) can output this uncertainty for the prediction; however, its accuracy depends on a user-defined threshold, and it cannot handle training data with unknown classes that are unexpectedly contaminated or deliberately mixed for better classification of unknown class. To address these limitations, I propose a classification method called modified-EDL that extends classical EDL such that it outputs a prediction, i.e. an input belongs to a collective unknown class along with a probability. Although other methods handle unknown classes by creating new unknown classes and attempting to learn each class efficiently, the proposed m-EDL outputs, in a natural way, the “uncertainty of the prediction” of classical EDL and uses the output as the probability of an unknown class. Although classical EDL can also classify both known and unknown classes, experiments on three datasets from different domains demonstrated that m-EDL outperformed EDL on known classes when there were instances of unknown classes. Moreover, extensive experiments under different conditions established that m-EDL can predict unknown classes even when the unknown classes in the training and test data have different properties. If unknown class data are to be mixed intentionally during training to increase the discrimination accuracy of unknown classes, it is necessary to mix such data that the characteristics of the mixed data are as close as possible to those of known class data. This ability extends the range of practical applications that can benefit from deep learning-based classification and prediction models.

Funder

Exploratory Research on Sustainable Humanosphere Science from the Research Institute for Sustainable Humanosphere (RISH), Kyoto University

JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference44 articles.

1. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012).

2. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2016, 770–778 (2016).

3. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2016, 2818–2826 (2016).

4. Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2017, 4700–4708 (2017).

5. Xie, S., Girshick, R., Dollár, P., Tu, Z. & He, K. Aggregated residual transformations for deep neural networks. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2017, 1492–1500 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3