Enzyme-catalysed mineralisation experiment study to solidify desert sands

Author:

Miao LinchangORCID,Wu Linyu,Sun XiaohaoORCID

Abstract

AbstractSandstorms are meteorological phenomena common in arid and semi-arid regions and have been recognized severe natural disasters worldwide. The key problem is how to control and mitigate sandstorm natural disasters. This research aims to mitigate their development by improving surface stability and soil water retention properties through soil mineralization. The enzymatic induced carbonate precipitation (EICP) is proposed to solidify desert sands and form a hard crust layer on the surface of desert sands. In contrast to micro-induced carbonate precipitation commonly used at room temperatures, EICP had high production efficiency and productivity at a broader temperature range (10–70 °C ±) and significantly improves material water retention properties, which was more suitable to desert environment. Results demonstrate that the enzyme-catalysed mineralisation method can be better resistance to high winds as the number of spraying times increased.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3