Validity and reliability of accelerations and orientations measured using wearable sensors during functional activities

Author:

Cudejko Tomasz,Button Kate,Al-Amri Mohammad

Abstract

AbstractWearable sensors may enable the assessment of movement in a real-world setting, but they are not yet a standard practice in the analysis of movement due to the unknown accuracy and reliability with respect to different functional activities. Here, we established the concurrent validity and test–retest reliability of accelerations and orientations measured using affordable novel sensors during squats, jumps, walking and stair ambulation. In this observational study, participants underwent three data collection sessions during one day. Accelerations and orientations from sacrum, thigh and shank were collected using these sensors and already validated gold-standard sensors as the criterion method. We assessed validity by comparing the similarity of signal waveforms with the Linear Fit Method and by comparing mean differences in range values with the Bland–Altman plots. Reliability was assessed by calculating interclass correlation coefficient and standard error of measurements of the range values. Concurrent validity was from fair to excellent in 91% of the cases for accelerations and in 84.4% for orientations. Test–retest reliability of accelerations was from fair to excellent in 97% of cases when the sensors were attached by a researcher, and in 84.4% of cases when the sensors were attached by participants. Test–retest reliability of orientations was from fair to excellent in 88.9% of cases when the sensors were attached by a researcher, and in 68.9% of cases when the sensors were attached by participants. In conclusion, the new affordable sensors provide accurate measures of accelerations and orientations during multiple functional activities in healthy adults. Reliability of the orientations may depend on the ability to replicate the same position of the sensor under test–retest conditions.

Funder

European Regional Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3