Author:
Tian Jun,Qian Bo,Zhang Sanmei,Guo Rui,Zhang Hui,Jeannon J.-P.,Jin Rongxiu,Feng Xiang,Zhan Yangni,Liu Jie,He Pengfei,Guo Jue,Li Le,Jia Yue,Huang Fuhui,Wang Binquan
Abstract
Abstract
Three-dimensional (3D) image reconstruction of tumors based on serial histological sectioning is one of the most powerful methods for accurate high-resolution visualization of tumor structures. However, 3D histological reconstruction of whole tumor has not yet been achieved. We established a high-resolution 3D model of molecular marked whole laryngeal cancer by optimizing the currently available techniques. A series of 5,388 HE stained or immunohistochemically stained whole light microscopic images (200 ×) were acquired (15.61 TB).The data set of block-face images (96.2 GB) was also captured. Direct volume rendering of serial 6.25 × light microscopy images did not demonstrate the major characteristics of the laryngeal cancer as expected. Based on fusion of two datasets, the accurate boundary of laryngeal tumor bulk was visualized in an anatomically realistic context. In the regions of interest, micro tumor structure, budding, cell proliferation and tumor lymph vessels were well represented in 3D after segmentation, which highlighted the advantages of 3D reconstruction of light microscopy images. In conclusion, generating 3D digital histopathological images of a whole solid tumor based on current technology is feasible. However, data mining strategy should be developed for complete utilization of the large amount of data generated.
Funder
The Key Research and Development Program Funding of Shanxi Province
Shanxi Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献