De novo transcriptome assembly, functional annotation, and expression profiling of rye (Secale cereale L.) hybrids inoculated with ergot (Claviceps purpurea)

Author:

Mahmood Khalid,Orabi Jihad,Kristensen Peter Skov,Sarup Pernille,Jørgensen Lise Nistrup,Jahoor Ahmed

Abstract

AbstractRye is used as food, feed, and for bioenergy production and remain an essential grain crop for cool temperate zones in marginal soils. Ergot is known to cause severe problems in cross-pollinated rye by contamination of harvested grains. The molecular response of the underlying mechanisms of this disease is still poorly understood due to the complex infection pattern. RNA sequencing can provide astonishing details about the transcriptional landscape, hence we employed a transcriptomic approach to identify genes in the underlying mechanism of ergot infection in rye. In this study, we generated de novo assemblies from twelve biological samples of two rye hybrids with identified contrasting phenotypic responses to ergot infection. The final transcriptome of ergot susceptible (DH372) and moderately ergot resistant (Helltop) hybrids contain 208,690 and 192,116 contigs, respectively. By applying the BUSCO pipeline, we confirmed that these transcriptome assemblies contain more than 90% of gene representation of the available orthologue groups at Virdiplantae odb10. We employed a de novo assembled and the draft reference genome of rye to count the differentially expressed genes (DEGs) between the two hybrids with and without inoculation. The gene expression comparisons revealed that 228 genes were linked to ergot infection in both hybrids. The genome ontology enrichment analysis of DEGs associated them with metabolic processes, hydrolase activity, pectinesterase activity, cell wall modification, pollen development and pollen wall assembly. In addition, gene set enrichment analysis of DEGs linked them to cell wall modification and pectinesterase activity. These results suggest that a combination of different pathways, particularly cell wall modification and pectinesterase activity contribute to the underlying mechanism that might lead to resistance against ergot in rye. Our results may pave the way to select genetic material to improve resistance against ergot through better understanding of the mechanism of ergot infection at molecular level. Furthermore, the sequence data and de novo assemblies are valuable as scientific resources for future studies in rye.

Funder

This work was funded by Innovation Fund Denmark and Pajbjerg Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3