Author:
Núñez-Toldrà Raquel,Vasquez-Sancho Fabian,Barroca Nathalie,Catalan Gustau
Abstract
AbstractThe recent discovery of bone flexoelectricity (strain-gradient-induced electrical polarization) suggests that flexoelectricity could have physiological effects in bones, and specifically near bone fractures, where flexoelectricity is theoretically highest. Here, we report a cytological study of the interaction between crack stress and bone cells. We have cultured MC3T3-E1 mouse osteoblastic cells in biomimetic microcracked hydroxyapatite substrates, differentiated into osteocytes and applied a strain gradient to the samples. The results show a strong apoptotic cellular response, whereby mechanical stimulation causes those cells near the crack to die, as indicated by live-dead and caspase staining. In addition, analysis two weeks post-stimulation shows increased cell attachment and mineralization around microcracks and a higher expression of osteocalcin –an osteogenic protein known to be promoted by physical exercise. The results are consistent with flexoelectricity playing at least two different roles in bone remodelling: apoptotic trigger of the repair protocol, and electro-stimulant of the bone-building activity of osteoblasts.
Funder
ERC starting grant
Generalitat de Catalunya
Ministerio de Ciencia Tecnología y Telecomunicaciones
Consejo Nacional para Investigaciones Científicas y Tecnológicas
Universidad de Costa Rica
H2020 Marie Curie
Ministerio de Economía, Industria y Competitividad, Gobierno de España
Publisher
Springer Science and Business Media LLC
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献