Microwave induced thermally assisted solvent-based bonding of biodegradable thermoplastics: an eco-friendly rapid approach for fabrication of microfluidic devices and analyte detection

Author:

Hasan Md Sadique,Borhani Shayan,Ramamurthy Sai Sathish,Andar Abhay,Ge Xudong,Choa Fow-Sen,Kostov Yordan,Rao Govind

Abstract

AbstractThere is an increasing interest in low-cost, facile and versatile thermoplastic bonding for microfluidic applications that can be easily transitioned from laboratory prototyping to industrial manufacturing. In addition, owing to the surge in the usage of thermoplastic microfluidics and its adverse effect on the environment, it is prudent to source alternative materials that are biodegradable, providing a sustainable, green approach. To address the problems, here we introduce an environment friendly, low-cost and safe welding technology used in the fabrication of microcassettes from biodegradable cellulose acetate (CA) thermoplastics. The thermally assisted solvent based bonding of the thermoplastics was accomplished in a domestic microwave oven with the aid of a polyether ether ketone (PEEK) vise. To characterize the quality of the bonding, our in-house technique was compared with a conventional thermally assisted solvent bonding configuration using a heat press machine and tested under different conditions. Our microwave induced bonding of CA presents three times reduced bonding time with higher bonding strength, good reliability and does not necessitate the use of cumbersome instrumentation. Finally, we demonstrate an electrophoresis application and vitamin C detection accomplished using this biodegradable microcassette presenting comparable results with traditional techniques, illustrating the potential of this fabrication technique in different microfluidic applications.

Funder

U.S. Food and Drug Administration

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3