Redox activation of JNK2α2 mediates thyroid hormone-stimulated proliferation of neonatal murine cardiomyocytes

Author:

Tan LinORCID,Bogush Nikolay,Naib Hussain,Perry Jennifer,Calvert John W.,Martin David I. K.,Graham Robert M.,Naqvi Nawazish,Husain Ahsan

Abstract

AbstractMitochondria-generated reactive oxygen species (mROS) are frequently associated with DNA damage and cell cycle arrest, but physiological increases in mROS serve to regulate specific cell functions. T3 is a major regulator of mROS, including hydrogen peroxide (H2O2). Here we show that exogenous thyroid hormone (T3) administration increases cardiomyocyte numbers in neonatal murine hearts. The mechanism involves signaling by mitochondria-generated H2O2 (mH2O2) acting via the redox sensor, peroxiredoxin-1, a thiol peroxidase with high reactivity towards H2O2 that activates c-Jun N-terminal kinase-2α2 (JNK2α2). JNK2α2, a relatively rare member of the JNK family of mitogen-activated protein kinases (MAPK), phosphorylates c-Jun, a component of the activator protein 1 (AP-1) early response transcription factor, resulting in enhanced insulin-like growth factor 1 (IGF-1) expression and activation of proliferative ERK1/2 signaling. This non-canonical mechanism of MAPK activation couples T3 actions on mitochondria to cell cycle activation. Although T3 is regarded as a maturation factor for cardiomyocytes, these studies identify a novel redox pathway that is permissive for T3-mediated cardiomyocyte proliferation—this because of the expression of a pro-proliferative JNK isoform that results in growth factor elaboration and ERK1/2 cell cycle activation.

Funder

Fondation Leducq Transatlantic Network

Department of Medicine, Emory University

American Heart Association

U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute

Fondation Leducq Transatlantic Network Department of Medicine, Emory University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3