Reliability of crowdsourced data and patient-reported outcome measures in cough-based COVID-19 screening

Author:

Xiong Hao,Berkovsky Shlomo,Kâafar Mohamed Ali,Jaffe Adam,Coiera Enrico,Sharan Roneel V.

Abstract

AbstractMass community testing is a critical means for monitoring the spread of the COVID-19 pandemic. Polymerase chain reaction (PCR) is the gold standard for detecting the causative coronavirus 2 (SARS-CoV-2) but the test is invasive, test centers may not be readily available, and the wait for laboratory results can take several days. Various machine learning based alternatives to PCR screening for SARS-CoV-2 have been proposed, including cough sound analysis. Cough classification models appear to be a robust means to predict infective status, but collecting reliable PCR confirmed data for their development is challenging and recent work using unverified crowdsourced data is seen as a viable alternative. In this study, we report experiments that assess cough classification models trained (i) using data from PCR-confirmed COVID subjects and (ii) using data of individuals self-reporting their infective status. We compare performance using PCR-confirmed data. Models trained on PCR-confirmed data perform better than those trained on patient-reported data. Models using PCR-confirmed data also exploit more stable predictive features and converge faster. Crowd-sourced cough data is less reliable than PCR-confirmed data for developing predictive models for COVID-19, and raises concerns about the utility of patient reported outcome data in developing other clinical predictive models when better gold-standard data are available.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3