Author:
Timmons Patrick Brendan,Hewage Chandralal M.
Abstract
AbstractThe growing prevalence of resistance to antibiotics motivates the search for new antibacterial agents. Antimicrobial peptides are a diverse class of well-studied membrane-active peptides which function as part of the innate host defence system, and form a promising avenue in antibiotic drug research. Some antimicrobial peptides exhibit toxicity against eukaryotic membranes, typically characterised by hemolytic activity assays, but currently, the understanding of what differentiates hemolytic and non-hemolytic peptides is limited. This study leverages advances in machine learning research to produce a novel artificial neural network classifier for the prediction of hemolytic activity from a peptide’s primary sequence. The classifier achieves best-in-class performance, with cross-validated accuracy of $$85.7\%$$
85.7
%
and Matthews correlation coefficient of 0.71. This innovative classifier is available as a web server at https://research.timmons.eu/happenn, allowing the research community to utilise it for in silico screening of peptide drug candidates for high therapeutic efficacies.
Funder
University College Dublin
Publisher
Springer Science and Business Media LLC
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献