Transcriptomic clock predicts vascular changes of prodromal diabetic retinopathy

Author:

Toh Huishi,Smolentsev Alexander,Sadjadi Ryan,Clegg Dennis,Yan Jingqi,Stewart Ron,Thomson James A.,Jiang Peng

Abstract

AbstractDiabetic retinopathy is a common complication of long-term diabetes and that could lead to vision loss. Unfortunately, early diabetic retinopathy remains poorly understood. There is no effective way to prevent or treat early diabetic retinopathy until patients develop later stages of diabetic retinopathy. Elevated acellular capillary density is considered a reliable quantitative trait present in the early development of retinopathy. Hence, in this study, we interrogated whole retinal vascular transcriptomic changes via a Nile rat model to better understand the early pathogenesis of diabetic retinopathy. We uncovered the complexity of associations between acellular capillary density and the joint factors of blood glucose, diet, and sex, which was modeled through a Bayesian network. Using segmented regressions, we have identified different gene expression patterns and enriched Gene Ontology (GO) terms associated with acellular capillary density increasing. We developed a random forest regression model based on expression patterns of 14 genes to predict the acellular capillary density. Since acellular capillary density is a reliable quantitative trait in early diabetic retinopathy, and thus our model can be used as a transcriptomic clock to measure the severity of the progression of early retinopathy. We also identified NVP-TAE684, geldanamycin, and NVP-AUY922 as the top three potential drugs which can potentially attenuate the early DR. Although we need more in vivo studies in the future to support our re-purposed drugs, we have provided a data-driven approach to drug discovery.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3