Earth-vertical motion perception assessment using an elevator: a feasibility study

Author:

Schellenberg Simona,Straumann Dominik,Green David Andrew,Schuetz Philipp,Zehnder Yves,Swanenburg JaapORCID

Abstract

AbstractA feasible, inexpensive, rapid, and easy-to-use method to measure vestibular vertical movement perception is needed to assess the sacculus-mediated low-frequency otolith function of dizzy patients. To evaluate the feasibility of reaction time assessment in response to vertical motion induced by an elevator in healthy young individuals. We recorded linear acceleration/deceleration reaction times (LA-RT/LD-RT) of 20 healthy (13 female) subjects (mean age: 22 years ± 1 SD) as a measure of vertical vestibular motion perception. LA-RT/LD-RT were defined as the time elapsed from the start of elevator acceleration or deceleration to the time at which subjects in a sitting position indicated perceiving a change in velocity by pushing a button with their thumb. The light reaction time was measured as a reference. All 20 subjects tolerated the assessment with repeated elevator rides and reported no adverse events. Over all experiments, one upward and four downward rides had to be excluded for technical reasons (2.5%). The fraction of premature button presses varied among the four conditions, possibly related to elevator vibration (upward rides: LA-RT-up 66%, LD-RT-up 0%; downward rides: LA-RT-down 12%, LD-RT-down 4%). Thus LD-RT-up yielded the most robust results. The reaction time to earth-vertical deceleration elicited by an elevator provides a consistent indicator of linear vestibular motion perception in healthy humans. The testing procedure is inexpensive and easy to use. Deceleration on upward rides yielded the most robust measurements.

Funder

Dr. M.K. Dabbous Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3