Feature importance correlation from machine learning indicates functional relationships between proteins and similar compound binding characteristics

Author:

Rodríguez-Pérez Raquel,Bajorath Jürgen

Abstract

AbstractMachine learning is widely applied in drug discovery research to predict molecular properties and aid in the identification of active compounds. Herein, we introduce a new approach that uses model-internal information from compound activity predictions to uncover relationships between target proteins. On the basis of a large-scale analysis generating and comparing machine learning models for more than 200 proteins, feature importance correlation analysis is shown to detect similar compound binding characteristics. Furthermore, rather unexpectedly, the analysis also reveals functional relationships between proteins that are independent of active compounds and binding characteristics. Feature importance correlation analysis does not depend on specific representations, algorithms, or metrics and is generally applicable as long as predictive models can be derived. Moreover, the approach does not require or involve explainable or interpretable machine learning, but only access to feature weights or importance values. On the basis of our findings, the approach represents a new facet of machine learning in drug discovery with potential for practical applications.

Funder

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3