Relationship among muscle strength, muscle endurance, and skeletal muscle oxygenation dynamics during ramp incremental cycle exercise

Author:

Nemoto Shinji,Nakabo Tohru,Tashiro Naonori,Kishino Asami,Yoshikawa Akira,Nakamura Daisuke,Geshi Eiichi

Abstract

AbstractPeak oxygen uptake (VO2), evaluated as exercise tolerance, is a strong predictor of life prognosis regardless of health condition. Several previous studies have reported that peak VO2 is higher in those with a greater decrease in muscle oxygen saturation (SmO2) in the active muscles during incremental exercise. However, the skeletal muscle characteristics of individuals exhibiting a greater decrease in SmO2 during active muscle engagement in incremental exercise remain unclear. This study aimed to clarify the relationship among muscle strength, muscle endurance, and skeletal muscle oxygenation dynamics in active leg muscles during incremental exercise. Twenty-four healthy young men were included and categorized into the non-moderate-to-high muscular strength and endurance group (those with low leg muscle strength, endurance, or both; n = 11) and the moderate-to-high muscular strength and endurance group (those with both moderate-to-high leg muscle strength and endurance; n = 13). All participants underwent cardiopulmonary exercise testing combined with near-infrared spectroscopy to assess whole-body peak VO2 and the change in SmO2 at the lateral vastus lateralis from rest to each exercise stage as skeletal muscle oxygenation dynamics. A linear mixed-effects model, with the change in SmO2 from rest to each stage as the dependent variable, individual participants as random effects, and group and exercise load as fixed effects, revealed significant main effects for both group (P = 0.001) and exercise load (P < 0.001) as well as a significant interaction between the two factors (P < 0.001). Furthermore, multiple-comparison test results showed that the change in SmO2 from rest to 40%–100% peak VO2 was significantly higher in the moderate-to-high muscular strength and endurance group than in the non-moderate-to-high muscular strength and endurance group. Maintaining both muscle strength and endurance at moderate or higher levels contributes to high skeletal muscle oxygenation dynamics (i.e., greater decrease in SmO2) during moderate- or high-intensity exercise.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3