Covering assisted intuitionistic fuzzy bi-selection technique for data reduction and its applications

Author:

Saini Rajat,Tiwari Anoop Kumar,Nath Abhigyan,Singh Phool,Maurya S. P.,Shah Mohd Asif

Abstract

AbstractThe dimension and size of data is growing rapidly with the extensive applications of computer science and lab based engineering in daily life. Due to availability of vagueness, later uncertainty, redundancy, irrelevancy, and noise, which imposes concerns in building effective learning models. Fuzzy rough set and its extensions have been applied to deal with these issues by various data reduction approaches. However, construction of a model that can cope with all these issues simultaneously is always a challenging task. None of the studies till date has addressed all these issues simultaneously. This paper investigates a method based on the notions of intuitionistic fuzzy (IF) and rough sets to avoid these obstacles simultaneously by putting forward an interesting data reduction technique. To accomplish this task, firstly, a novel IF similarity relation is addressed. Secondly, we establish an IF rough set model on the basis of this similarity relation. Thirdly, an IF granular structure is presented by using the established similarity relation and the lower approximation. Next, the mathematical theorems are used to validate the proposed notions. Then, the importance-degree of the IF granules is employed for redundant size elimination. Further, significance-degree-preserved dimensionality reduction is discussed. Hence, simultaneous instance and feature selection for large volume of high-dimensional datasets can be performed to eliminate redundancy and irrelevancy in both dimension and size, where vagueness and later uncertainty are handled with rough and IF sets respectively, whilst noise is tackled with IF granular structure. Thereafter, a comprehensive experiment is carried out over the benchmark datasets to demonstrate the effectiveness of simultaneous feature and data point selection methods. Finally, our proposed methodology aided framework is discussed to enhance the regression performance for IC50 of Antiviral Peptides.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3