In-situ directed energy deposition of Al based low density steel for automotive applications

Author:

Rott Matěj,Li Ying,Koukolíková Martina,Šípová Martina,Salvetr Pavel,Nový Zbyšek,Wolf Gerhard,Džugan Jan

Abstract

AbstractThis work deals with the fabrication of one low density steel by mixing AISI S2 tool steel and AlSi10Mg powders using powder-based directed energy deposition (P-DED) technique. Two approaches of mixing powders were compared-continuous mixing during the process (in-situ) and mixing the powder prior to the process (premixed). The P-DED sample was characterised by a variety of techniques such as optical microscopy, scanning electron microscopy, electron backscatter diffraction, X-ray diffraction, and hardness measurement. Our findings demonstrate the successful achievement of steel with a 8 wt. % AlSi10Mg addition when two dissimilar powders are premixed, resulting in approximately 12% reduction in the density of S2 steel. Optimizing the powder feed rate and the ratio of AlSi10Mg powder contribute to an improvement of printability, eliminating materials separation, leading to a homogenous deposited part. Compared to the in-situ mixing case, the premixed process within the current process window generates a more homogeneous microstructure consisting of three phases: Ferrite, Fe3Al and Fe3AlC carbide. Whereas, the in-situ sample exhibits only two phases Ferrite and Fe3Al. The hardness of the premixed sample is found to be slightly higher compared to the in-situ sample.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3