The physical and optical investigations of the tannic acid functionalised Cu-based oxide nanostructures

Author:

Che Lah Nurul Akmal,Murthy Puhanes,Mohd Zubir Mohd Nashrul

Abstract

AbstractThe need for a mild, low-cost, green environment that is able to produce exotic properties of output nanostructures is appealing nowadays. Employing these requirements, the copper (Cu)—based oxide nanostructures have been successfully synthesised via one-pot reaction using biocompatible natural polyphenol, tannic acid (TA) as both the reducing agent and stabiliser at 60, 70 and 80 °C. The structural and optical studies disclosed the effect of TA on the surface morphology, phase purity, elemental composition, optical microstrain and optical intrinsic energy of this mixed Cu2O and CuO nanostructures. The optically based method describes the comparative details of the multi-band gap in the presence of more than one element with overlapping spectra from the first-derivative absorbance curve $$\frac{\Delta E}{\Delta A}$$ Δ E Δ A and the exponential absorbance of Urbach tail energy $${E}_{U}$$ E U towards the conventional Tauc bandgap. The $$\frac{\Delta E}{\Delta A}$$ Δ E Δ A demonstrates that the pronounced effect of TA that Cu2O and CuO nanostructures creates much sensitive first-derivative bandgap output compared to the Tauc bandgap. The results also show that the $${E}_{U}$$ E U reduced as the temperature reaches 70 °C and then experienced sudden increase at 80 °C. The change in the pattern is parallel to the trend observed in the Williamson–Hall microstrain and is evident from the variations of the mean crystallite size $${D}_{m}$$ D m which is also a cause response to the change in temperature or pH. Therefore, the current work has elucidated that the structural and optical correlations on the as-synthesised Cu2O and CuO nanostructures in the presence of TA were the combined reaction of pH change and the ligand complexation reactions. The acquired results suggest a more comprehensive range of studies to further understand the extent relationship between the physical and optical properties of TA functionalised Cu-based oxide nanostructures.

Funder

Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3