A deep semantic matching approach for identifying relevant messages for social media analysis

Author:

Biggers Frederick Brown,Mohanty Somya D.,Manda Prashanti

Abstract

AbstractThere is a growing interest in using social media content for Natural Language Processing applications. However, it is not easy to computationally identify the most relevant set of tweets related to any specific event. Challenging semantics coupled with different ways for using natural language in social media make it difficult for retrieving the most relevant set of data from any social media outlet. This paper seeks to demonstrate a way to present the changing semantics of Twitter within the context of a crisis event, specifically tweets during Hurricane Irma. These methods can be used to identify the most relevant corpus of text for analysis in relevance to a specific incident such as a hurricane. Using an implementation of the Word2Vec method of Neural Network training mechanisms to create Word Embeddings, this paper will: discuss how the relative meaning of words changes as events unfold; present a mechanism for scoring tweets based upon dynamic, relative context relatedness; and show that similarity between words is not necessarily static. We present different methods for training the vector model in Word2Vec for identification of the most relevant tweets for any search query. The impact of tuning parameters such as Word Window Size, Minimum Word Frequency, Hidden Layer Dimensionality, and Negative Sampling on model performance was explored. The window containing the local maximum for AU_ROC for each parameter serves as a guide for other studies using the methods presented here for social media data analysis.

Funder

Directorate for Biological Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference31 articles.

1. Internet Live Stats—Internet Usage & Social Media Statistics. https://www.internetlivestats.com/ (accessed 24 Oct 2019).

2. Longley, P. A. & Adnan, M. Geo-temporal Twitter demographics. Int. J. Geograph. Inf. Sci. 30(2), 369–389. https://doi.org/10.1080/13658816.2015.1089441 (2016) (Accessed 2019-01-30).

3. Liu, X., Kar, B., Zhang, C. & Cochran, D. M. Assessing relevance of tweets for risk communication. Int. J. Digit. Earthhttps://doi.org/10.1080/17538947.2018.1480670 (2018).

4. Cangialosi, J.P., Latto, A.S. & Berg, R. Hurricane Irma. Technical Report AL112017, National Oceanic and Atmospheric Administration U.S. Department of Commerce (2018). https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf (accessed 17 June 2019).

5. Center, U.S.N.H. Costliest U.S. Tropical Cyclones Tables Update. Technical report, National Oceanic and Atmospheric Administration (2018). https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf (accessed 17 June 2019).

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3