Response of plant reflectance spectrum to simulated dust deposition and its estimation model

Author:

Zhu Jiyou,Zhang Xinna,He Weijun,Yan Xuemei,Yu Qiang,Xu Chengyang,Jiang Qun’ou,Huang Huaguo,Wang Ruirui

Abstract

AbstractTo quantitatively reflect the relationship between dust and plant spectral reflectance. Dust from different sources in the city were selected to simulate the spectral characteristics of leaf dust. Taking Euonymus japonicus as the research object. Prediction model of leaf dust deposition was established based on spectral parameters. Results showed that among the three different dust pollutants, the reflection spectrum has 6 main reflection peaks and 7 main absorption valleys in 350–2500 nm. A steep reflection platform appears in the 692–763 nm band. In 760–1400 nm, the spectral reflectance gradually decreases with the increase of leaf dust coverage, and the variation range was coal dust > cement dust > pure soil dust. The spectral reflectance in 680–740 nm gradually decreases with the increase of leaf dust coverage. In the near infrared band, the fluctuation amplitude and slope of its first derivative spectrum gradually decrease with the increase of leaf dust. The biggest amplitude of variation was cement dust. With the increase of dust retention, the red edge position generally moves towards short wave direction, and the red edge slope generally decreases. The blue edge position moved to the short wave direction first and then to the long side direction, while the blue edge slope generally shows a decreasing trend. The yellow edge position moved to the long wave direction first and then to the short wave direction (coal dust, cement dust), and generally moved to the long side direction (pure soil dust). The yellow edge slope increases first and then decreases. The R2 values of the determination coefficients of the dust deposition prediction model have reached significant levels, which indicated that there was a relatively stable correlation between the spectral reflectance and dust deposition. The best prediction model of leaf dust deposition was leaf water content index model (y = 1.5019x − 1.4791, R2 = 0.7091, RMSE = 0.9725).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3