Detecting the effects of predator-induced stress on the global metabolism of an ungulate prey using fecal metabolomic fingerprinting

Author:

Valerio Azzurra,Borrego C. Steven,Boitani Luigi,Casadei Luca,Giuliani Alessandro,Wielgus Robert B.,Simek Stephanie L.,Valerio Mariacristina

Abstract

AbstractFew field tests have assessed the effects of predator-induced stress on prey fitness, particularly in large carnivore-ungulate systems. Because traditional measures of stress present limitations when applied to free-ranging animals, new strategies and systemic methodologies are needed. Recent studies have shown that stress and anxiety related behaviors can influence the metabolic activity of the gut microbiome in mammal hosts, and these metabolic alterations may aid in identification of stress. In this study, we used NMR-based fecal metabolomic fingerprinting to compare the fecal metabolome, a functional readout of the gut microbiome, of cattle herds grazing in low vs. high wolf-impacted areas within three wolf pack territories. Additionally, we evaluated if other factors (e.g., cattle nutritional state, climate, landscape) besides wolf presence were related to the variation in cattle metabolism. By collecting longitudinal fecal samples from GPS-collared cattle, we found relevant metabolic differences between cattle herds in areas where the probability of wolf pack interaction was higher. Moreover, cattle distance to GPS-collared wolves was the factor most correlated with this difference in cattle metabolism, potentially reflecting the variation in wolf predation risk. We further validated our results through a regression model that reconstructed cattle distances to GPS-collared wolves based on the metabolic difference between cattle herds. Although further research is needed to explore if similar patterns also hold at a finer scale, our results suggests that fecal metabolomic fingerprinting is a promising tool for assessing the physiological responses of prey to predation risk. This novel approach will help improve our knowledge of the consequences of predators beyond the direct effect of predation.

Funder

Washington State Legislature

Washington Department of Fish and Wildlife

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3