Identification of extracellular vesicles from their Raman spectra via self-supervised learning

Author:

Jensen Mathias N.,Guerreiro Eduarda M.,Enciso-Martinez Agustin,Kruglik Sergei G.,Otto Cees,Snir Omri,Ricaud Benjamin,Hellesø Olav Gaute

Abstract

AbstractExtracellular vesicles (EVs) released from cells attract interest for their possible role in health and diseases. The detection and characterization of EVs is challenging due to the lack of specialized methodologies. Raman spectroscopy, however, has been suggested as a novel approach for biochemical analysis of EVs. To extract information from the spectra, a novel deep learning architecture is explored as a versatile variant of autoencoders. The proposed architecture considers the frequency range separately from the intensity of the spectra. This enables the model to adapt to the frequency range, rather than requiring that all spectra be pre-processed to the same frequency range as it was trained on. It is demonstrated that the proposed architecture accepts Raman spectra of EVs and lipoproteins from 13 biological sources and from two laboratories. High reconstruction accuracy is maintained despite large variances in frequency range and noise level. It is also shown that the architecture is able to cluster the biological nanoparticles by their Raman spectra and differentiate them by their origin without pre-processing of the spectra or supervision during learning. The model performs label-free differentiation, including separating EVs from activated vs. non-activated blood platelets and EVs/lipoproteins from prostate cancer patients versus non-cancer controls. The differentiation is evaluated by creating a neural network classifier that observes the features extracted by the model to classify the spectra according to their sample origin. The classification reveals a test sensitivity of $$92.2\%$$ 92.2 % and selectivity of $$92.3\%$$ 92.3 % over 769 measurements from two labs that have different measurement configurations.

Funder

Norges Forskningsråd

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

UiT The Arctic University of Norway

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3