Comparative transcriptome analysis reveals the phosphate starvation alleviation mechanism of phosphate accumulating Pseudomonas putida in Arabidopsis thaliana

Author:

Srivastava Sonal,Ranjan Manish,Bano Nasreen,Asif Mehar Hasan,Srivastava Suchi

Abstract

AbstractPhosphate starvation is one of the major factors limiting plant productivity globally. Soil microflora with an inherent trait of phosphate accumulation directly influences soil phosphorus level by regulating its labile form in soil solution. However, the detailed mechanism involved during their interaction with plants under phosphate deficient conditions is still unexplored. Hence, to dissect these complex gene regulatory networks, transcriptome analysis of A. thaliana roots grown under phosphate starved conditions in presence of phosphate accumulating bacteria (Pseudomonas putida; RAR) was performed. Plants grown under phosphate starved conditions showed upregulation of phosphate starvation responsive genes associated with cell biogenesis, stress, photosynthesis, senescence, and cellular transport. Inoculation of RAR upregulated genes linked to defense, cell wall remodeling, and hormone metabolism in stressed plants. Gene ontology analysis indicated the induction of S-glycoside, glucosinolate, and glycosinolate metabolic processes in RAR inoculated plants under phosphate stressed conditions. Further, protein–protein interaction analysis revealed upregulation of root development, cation transport, anion transport, sulfur compound metabolic process, secondary metabolic process, cellular amino metabolic process, and response to salicylic acid in RAR inoculated plants under phosphate starved conditions. These results indicate the potential role of phosphate accumulating bacteria in alleviating phosphate starvation in plants by involving multiple pathways.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3