Maximizing electrical output and reducing heat-related losses in photovoltaic thermal systems with a thorough examination of flow channel integration and nanofluid cooling

Author:

Allehiany F. M.,Memon Abid A.,Memon M. Asif,Fenta Amsalu

Abstract

AbstractIn recent years, global energy demand has surged, emphasizing the need for nations to enhance energy resources. The photovoltaic thermal (PV/T) system, capable of generating electrical energy from sunlight, is a promising renewable energy solution. However, it faces the challenge of overheating, which reduces efficiency. To address this, we introduce a flow channel within the PV/T system, allowing coolant circulation to improve electrical efficiency. Within this study, we explore into the workings of a PV/T system configuration, featuring a polycrystalline silicon panel atop a copper absorber panel. This innovative setup incorporates a rectangular flow channel, enhanced with a centrally positioned rotating circular cylinder, designed to augment flow velocity. This arrangement presents a forced convection scenario, where heat transfer primarily occurs through conduction in the uppermost two layers, while the flow channel beneath experiences forced convection. To capture this complex phenomenon, we accurately address the two-dimensional Navier–Stokes and energy equations, employing simulations conducted via COMSOL 6.0 software, renowned for its utilization of the finite element method. To optimize heat dissipation and efficiency, we introduce a hybrid nanofluid comprised of titanium oxide and silver nanoparticles dispersed in water, circulating through the flow channel. Various critical parameters come under scrutiny, including the Reynolds number, explored across the range of 100–1000, the volume fractions of both nanoparticle types, systematically tested within the range of 0.001–0.05, and the controlled speed of the circular cylinder, maintained within the range of 0.1–0.25 m/s. It was found that incorporating silver nanoparticles as a suspended component is more effective in enhancing PV/T efficiency than the addition of titanium oxide. Additionally, maintaining the volume fraction of titanium oxide between 4 and 5% yields improved efficiency, provided that the cylinder rotates at a higher speed. It was observed that cell efficiency can be regulated by adjusting four parameters, such as the Reynolds number, cylinder rotation speed, and the volume fraction of both nanoparticles.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3