Modified host defence peptide GF19 slows TNT-mediated spread of corneal herpes simplex virus serotype I infection

Author:

Thathapudi Neethi C.,Callai-Silva Natalia,Malhotra Kamal,Basu Sankar,Aghajanzadeh-Kiyaseh Mozhgan,Zamani-Roudbaraki Mostafa,Groleau Marc,Lombard-Vadnais Félix,Lesage Sylvie,Griffith May

Abstract

AbstractCorneal HSV-1 infections are a leading cause of infectious blindness globally by triggering tissue damage due to the intense inflammation. HSV-1 infections are treated mainly with antiviral drugs that clear the infections but are inefficient as prophylactics. The body produces innate cationic host defence peptides (cHDP), such as the cathelicidin LL37. Various epithelia, including the corneal epithelium, express LL37. cHDPs can cause disintegration of pathogen membranes, stimulate chemokine production, and attract immune cells. Here, we selected GF17, a peptide containing the LL37 fragment with bioactivity but with minimal cytotoxicity, and added two cell-penetrating amino acids to enhance its activity. The resulting GF19 was relatively cell-friendly, inducing only partial activation of antigen presenting immune cells in vitro. We showed that HSV-1 spreads by tunneling nanotubes in cultured human corneal epithelial cells. GF19 given before infection was able to block infection, most likely by blocking viral entry. When cells were sequentially  exposed to viruses and GF19,  the infection was attenuated but not arrested, supporting the contention that the GF19 mode of action was to block viral entry. Encapsulation into silica nanoparticles allowed a more sustained release of GF19, enhancing its activity. GF19 is most likely suitable as a prevention rather than a virucidal treatment.

Funder

Maisonneuve-Rosemont Hospital Research Centre

FRQS-PBEEE Doctoral scholarship

Fonds de Recherche du Québec - Santé

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Caroline Durand Foundation, Quebec, Canada

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3