Author:
Park Claire Keun Sun,Trumpour Tiana,Aziz Amal,Bax Jeffrey Scott,Tessier David,Gardi Lori,Fenster Aaron
Abstract
AbstractBreast cancer screening has substantially reduced mortality across screening populations. However, a clinical need persists for more accessible, cost-effective, and robust approaches for increased-risk and diverse patient populations, especially those with dense breasts where screening mammography is suboptimal. We developed and validated a cost-effective, portable, patient-dedicated three-dimensional (3D) automated breast ultrasound (ABUS) system for point-of-care breast cancer screening. The 3D ABUS system contains a wearable, rapid-prototype 3D-printed dam assembly, a compression assembly, and a computer-driven 3DUS scanner, adaptable to any commercially available US machine and transducer. Acquisition is operator-agnostic, involves a 40-second scan time, and provides multiplanar 3D visualization for whole-breast assessment. Geometric reconstruction accuracy was evaluated with a 3D grid phantom and tissue-mimicking breast phantoms, demonstrating linear measurement and volumetric reconstruction errors < 0.2 mm and < 3%, respectively. The system’s capability was demonstrated in a healthy male volunteer and two healthy female volunteers, representing diverse patient geometries and breast sizes. The system enables comfortable ultrasonic coupling and tissue stabilization, with adjustable compression to improve image quality while alleviating discomfort. Moreover, the system effectively mitigates breathing and motion, since its assembly affixes directly onto the patient. While future studies are still required to evaluate the impact on current clinical practices and workflow, the 3D ABUS system shows potential for adoption as an alternative, cost-effective, dedicated point-of-care breast cancer screening approach for increased-risk populations and limited-resource settings.
Funder
Natural Sciences and Engineering Research Council of Canada
Schulich School of Medicine and Dentistry, Western University
Ontario Institute for Cancer Research
Canadian Institutes of Health Research
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献