Cost-effective, portable, patient-dedicated three-dimensional automated breast ultrasound for point-of-care breast cancer screening

Author:

Park Claire Keun Sun,Trumpour Tiana,Aziz Amal,Bax Jeffrey Scott,Tessier David,Gardi Lori,Fenster Aaron

Abstract

AbstractBreast cancer screening has substantially reduced mortality across screening populations. However, a clinical need persists for more accessible, cost-effective, and robust approaches for increased-risk and diverse patient populations, especially those with dense breasts where screening mammography is suboptimal. We developed and validated a cost-effective, portable, patient-dedicated three-dimensional (3D) automated breast ultrasound (ABUS) system for point-of-care breast cancer screening. The 3D ABUS system contains a wearable, rapid-prototype 3D-printed dam assembly, a compression assembly, and a computer-driven 3DUS scanner, adaptable to any commercially available US machine and transducer. Acquisition is operator-agnostic, involves a 40-second scan time, and provides multiplanar 3D visualization for whole-breast assessment. Geometric reconstruction accuracy was evaluated with a 3D grid phantom and tissue-mimicking breast phantoms, demonstrating linear measurement and volumetric reconstruction errors < 0.2 mm and < 3%, respectively. The system’s capability was demonstrated in a healthy male volunteer and two healthy female volunteers, representing diverse patient geometries and breast sizes. The system enables comfortable ultrasonic coupling and tissue stabilization, with adjustable compression to improve image quality while alleviating discomfort. Moreover, the system effectively mitigates breathing and motion, since its assembly affixes directly onto the patient. While future studies are still required to evaluate the impact on current clinical practices and workflow, the 3D ABUS system shows potential for adoption as an alternative, cost-effective, dedicated point-of-care breast cancer screening approach for increased-risk populations and limited-resource settings.

Funder

Natural Sciences and Engineering Research Council of Canada

Schulich School of Medicine and Dentistry, Western University

Ontario Institute for Cancer Research

Canadian Institutes of Health Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3