The Lake Chad hydrology under current climate change

Author:

Pham-Duc BinhORCID,Sylvestre Florence,Papa FabriceORCID,Frappart FrédéricORCID,Bouchez CamilleORCID,Crétaux Jean-Francois

Abstract

AbstractLake Chad, in the Sahelian zone of west-central Africa, provides food and water to ~50 million people and supports unique ecosystems and biodiversity. In the past decades, it became a symbol of current climate change, held up by its dramatic shrinkage in the 1980s. Despites a partial recovery in response to increased Sahelian precipitation in the 1990s, Lake Chad is still facing major threats and its contemporary variability under climate change remains highly uncertain. Here, using a new multi-satellite approach, we show that Lake Chad extent has remained stable during the last two decades, despite a slight decrease of its northern pool. Moreover, since the 2000s, groundwater, which contributes to ~70% of Lake Chad’s annual water storage change, is increasing due to water supply provided by its two main tributaries. Our results indicate that in tandem with groundwater and tropical origin of water supply, over the last two decades, Lake Chad is not shrinking and recovers seasonally its surface water extent and volume. This study provides a robust regional understanding of current hydrology and changes in the Lake Chad region, giving a basis for developing future climate adaptation strategies.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference72 articles.

1. Stocker, T.  et al.  Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 1535 (2013).

2. Giorgi, F. Variability and trends of sub-continental scale surface climate in the twentieth century. Part I: observations. Climate Dynamics 18, 675–691 (2002).

3. Nicholson, S. On the question of the recovery of the rains in the West African Sahel. Journal of Arid Environments 63, 615–641 (2005).

4. Fontaine, B., Roucou, P., Gaetani, M. & Marteau, R. Recent changes in precipitation, ITCZ convection and northern tropical circulation over North Africa (1979–2007). International Journal of Climatology 31, 633–648 (2011).

5. Taylor, C. M.  et al.  Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature  544, 475–478 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3