New preparation methods for coated heat exchangers in adsorption refrigeration and heat pumps applications

Author:

Banos Oscar,Bergmann Ute,Glorius Maja,Ohmann Sven,Seidel Torsten,Breitkopf Cornelia

Abstract

AbstractAdsorption refrigeration systems and heat pumps still possess a relatively reduced market share as compared to the traditional compression systems. Despite having the great advantage of being powered by cheap heat (instead of expensive electric work), the implementation of systems based on adsorption principles remains limited to few specific applications. The main drawback that needs to be solved is their reduced specific power due to the low thermal conductivity and low stability of the adsorbents. The current state of the art of commercial adsorption cooling systems rely on adsorbers based on coated finned heat exchangers to optimize the cooling power. It is a well known result, that the reduction of the thickness of the coating derives in a reduction of the mass transport impedance, and that the increment of the ratio surface to volume of conductive structures increases the power without reducing the efficiency. The metallic fibres used in this work can offer a ratio of specific surface in the range of 2500–50,000 m2/m3.Three methods of preparing very thin but stable salt-hydrate coatings on metallic surfaces, including metallic fibres, for the production of coated heat exchangers with high specific power, are presented for the first time. A surface treatment based on aluminium anodizing was chosen to create a stronger bond between coat and substrate. The microscopic structure of the resulting surface was analysed by Scan Electron Microscopy. To verify the presence of the desired species Attenuated Total Reflectance-Fourier Transformed Infrared and Energy dispersive X-ray spectroscopy were employed in the analysis. Their capacity to form hydrates was verified via simultaneous Thermogravimetric Analysis (TGA)/Differential Thermogravimetry (DTG). Over a mass difference of 0.07 g(water)/g(composite) was detected in the coating of MgSO4, which showed signs of dehydration at temperatures around 60 °C, and repeatability after rehydration. Also positive results were obtained with SrCl2 and ZnSO4 with mass differences around 0.02 g/g below 100 °C. Hydroxyethyl Cellulose was chosen as additive to increase the stability and adherence of the coatings. The adsorption properties of the product were evaluated with simultaneous TGA-DTG, while their adherence was characterized by means of a procedure based on the test described in ISO2409. Coatings of CaCl2 displayed a much improved consistency and adherence, while retaining its adsorption capacity, showing mass differences of around 0.1 g/g at temperatures below 100 °C. Also MgSO4 retains the capacity of forming hydrates, showing a mass difference of more than 0.04 g/g below 100 °C. Finally, coated metallic fibres were investigated. Results show that the effective heat conductivity of a fibre structure coated with Al2(SO4)3 can be up to 4.7 times higher as compared to a block of pure Al2(SO4)3 . The coverage of the pursued coatings was visually investigated and the internal structure was evaluated by microscopic imaging of cross-sections. Coatings of around 50 µm of Al2(SO4)3 were generated, but in general the process requires optimization to achieve a more uniform distribution.

Funder

Bundesministerium für Wirtschaft und Technologie

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3