Author:
Kazarian Eve,Marks Asher,Cui Jin,Darbinyan Armine,Tong Elizabeth,Mueller Sabine,Cha Soonmee,Aboian Mariam S.
Abstract
AbstractWe evaluate the topographic distribution of diffuse midline gliomas and hemispheric high-grade gliomas in children with respect to their normal gene expression patterns and pathologic driver mutation patterns. We identified 19 pediatric patients with diffuse midline or high-grade glioma with preoperative MRI from tumor board review. 7 of these had 500 gene panel mutation testing, 11 patients had 50 gene panel mutation testing and one 343 gene panel testing from a separate institution were included as validation set. Tumor imaging features and gene expression patterns were analyzed using Allen Brain Atlas. Twelve patients had diffuse midline gliomas and seven had hemispheric high-grade gliomas. Three diffuse midline gliomas had the K27M mutation in the tail of histone H3 protein. All patients undergoing 500 gene panel testing had additional mutations, the most common being in ACVR1, PPM1D, and p53. Hemispheric high-grade gliomas had either TP53 or IDH1 mutation and diffuse midline gliomas had H3 K27M-mutation. Gene expression analysis in normal brains demonstrated that genes mutated in diffuse midline gliomas had higher expression along midline structures as compared to the cerebral hemispheres. Our study suggests that topographic location of pediatric diffuse midline gliomas and hemispheric high-grade gliomas correlates with driver mutations of tumor to the endogenous gene expression in that location. This correlation suggests that cellular state that is required for increased gene expression predisposes that location to mutations and defines the driver mutations within tumors that arise from that region.
Funder
Yale University
University of California, San Francisco, United States
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Castel, D. et al. Transcriptomic and epigenetic profiling of “diffuse midline gliomas, H3 K27M-mutant” discriminate two subgroups based on the type of histone H3 mutated and not supratentorial or infratentorial location. Acta Neuropathol. Commun. 6(1), 117 (2018).
2. Ezaki, T. et al. Molecular characteristics of pediatric non-ependymal, nonpilocytic gliomas associated with resistance to temozolomide. Mol. Med. Rep. 4(6), 1101–1105 (2011).
3. Jones, D. T. W. et al. Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nat. Rev. Cancer 19(8), 420–438 (2019).
4. Nikbakht, H. et al. Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nat. Commun. 7, 11185 (2016).
5. Himes, B. T., Zhang, L. & Daniels, D. J. Treatment strategies in diffuse midline gliomas with the H3K27M mutation: The role of convection-enhanced delivery in overcoming anatomic challenges. Front. Oncol. 9, 31 (2019).